EURAME1

quantingrem

On farm quantification of ammonia and greenhouse gas emissions from livestock production

Needs

The agriculture sector, in particular livestock housing, contributes substantially to the emission of various greenhouse gases (GHG) within the EU including 93% of EU ammonia (NH₃), 48 % of Methane (CH₄) and 72% of nitrous oxide (N_2O) emissions. Further, emissions of NH_3 cause formation of fine aerosol particles, acidification and eutrophication of the environment and can be transformed to N_2O .

Objectives

Develop traceable techniques for quantifying NH₃ and CH₄ emissions from selected livestock housings

Develop and characterise CO₂, NH₃ and CH₄ monitoring techniques for enhanced spatial/temporal coverage

The EU Green Deal seeks to reduce GHG emissions for the agriculture by 55% of the 1990 level by 2030 and to reduce N losses by at least 50 %.

As a result, the uncertainties in emission inventories (up to 300%), in deposition of NH₃ release from livestock housing and in N₂O production processes in biogeochemical models all need to be reduced. Low-cost emission monitoring solutions such as sensors that are traceable and validated are required.

It is thus essential to develop a coordinated European metrology infrastructure to improve the NH₃ and GHG measurements and to reduce the uncertainties of emission data for a better understanding the emissions of GHG and reactive N in agriculture.

Identify key-indicators and improve emission models for increasing the representativeness of emission estimations.

To develop simple-to-use farm-monitoring systems and provide management tools to farmers

Reduce uncertainty associated with up-scaling GHG emissions and nitrogen loss from soils.

To improve methods for quantifying NH₃ deposition from livestock housing and tracing N in managed soils.

To facilitate the dissemination and uptake of the technology and measurement infrastructure

Project Organisation

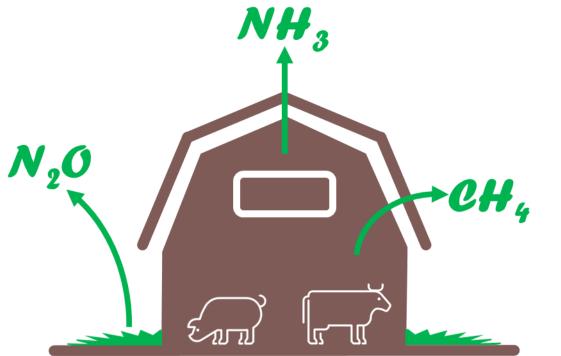
Towards SI-traceable reference methods for ivestock emissions factors

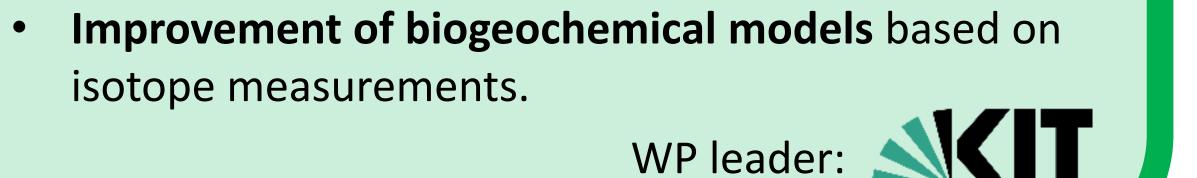
New sensors and measurement techniques: development, laboratory testing and demonstration in the field

- Improved wet ammonia reference gas,
- New comparisons directly in stables (reduction of the uncertainties),
- SI characterization, validation and comparison of the sophisticated emission calculation methods and other simplified models,
- **Uncertainty assessment** of the methods and the emissions factors. METAS WP leader:

Beyond livestock buildings: Reducing the uncertainties of N₂O inventories and improving the quantification of NH₃ deposition

- Determination of NH₃ deposition close to livestock housings,
- Intercomparison of measurement techniques for determination of field NH₃ fluxes,
- Determination of N₂O source processes in the field based on isotope ratios in N₂O,




- Development and characterization of **new** complementary sensors,
- Two **field comparison** campaigns
- Precise **instruction for farmers** to use the new sensors

WP leader:

Dissemination and communication

- **Contribution to missions inventory reports** under the UNFCCC,
- Provision of **guidelines** to facilitate the establishment of decision matrices and the promotion of mitigation measures by policy makers,

quantiAGREMI

Providing farmers access to **reliable methods** for identifying efficient mitigation strategies and provide quantitative GHG emissions at farm level. LGC WP leader:

Consortium

