

Method validation On-line programme

Session timings

Standard session times are:

Session 1: 09:30-12:00 GMT Session 2: 13:30-16:00 GMT

Some courses are scheduled with afternoon and evening sessions to allow participation from other time zones. Please see the website for details.

Sessions will include a mixture of presentations, interactive exercises and practice calculations.

Each session is scheduled for 2.5 hours but it is expected that most sessions will last for approx. 2 hours.

You will also be scheduled for a 30 min pre-course connectivity test to allow you to check your audio and access to the Webex platform.

Day	Session 1	Session 2
0	Module 0.1 – Pre-course work – familiarisation with Excel and basic statistical tools	
1	Module 1 Introduction to statistics Introduction to significance testing	Module 2 Significance testing: t- and F-tests
2	Module 3 Analysis of variance (ANOVA) Linear regression	Module 4 Introduction to method validation Evaluating precision
3	Module 5 Evaluating bias Planning precision and bias studies	Module 6 Ruggedness testing Selectivity
4	Module 7 Capability of detection Linearity and working range	Module 8 Measurement uncertainty and validation studies

Module Topics

Module 1 Introduction to course

Introduction to statistics

- Population vs sample statistics
- Distributions of data
- Degrees of freedom
- Calculating mean, standard deviation, relative standard deviation, standard deviation of the mean

Introduction to significance testing

- Introduction to significance testing
- Probability: level of confidence and significance
- One-tailed vs two-tailed tests
- Hypotheses
- Interpreting results from significance tests

Module 2 Significance testing: *t*-tests

- Different t-tests (one-sample, two-sample, paired)
- Calculating the *t* statistic
- Obtaining critical t-values
- Assessing the significance of t

Significance testing: *F*-test

- Calculating the F statistic
- Obtaining critical F-values
- Assessing the significance of F

Module 3 Analysis of variance (ANOVA)

- What is ANOVA?
- Uses of ANOVA
- Key terms in ANOVA (sum of squares, mean square)
- ANOVA calculations
- Interpreting the results from ANOVA

Linear regression: Interpretation of parameters and pitfalls

- Uses of regression
- Principles of least squares linear regression
- Assumptions in linear regression
- Interpreting residual plots
- Interpreting regression statistics (correlation coefficient, residual standard deviation, etc)
- Estimating the uncertainty in predicted values obtained from a linear calibration plot

Module 4

Introduction to method validation

- ISO definition of validation
- Why is validation necessary?
- Who validates a method and when?
- Defining analytical requirements
- · Assessing fitness for purpose

Precision

- Definition of precision
- Types of precision estimate (repeatability, reproducibility, intermediate precision)
- Determining precision
- How many replicates?
- Using ANOVA in precision estimation (pooling data)
- Exercise on planning precision studies

Module 5

Bias

- Definition of bias
- Expression of bias
- Using t-tests in bias assessment
- Number of replicates required
- Use of reference materials, spiking studies and reference methods in bias assessment

Module 6

Ruggedness testing

- Definition of ruggedness testing
- The need for ruggedness testing
- Examples of parameters that can be studied
- Planning a ruggedness test: the Plackett-Burman design
- Evaluating results from a Plackett-Burman study

Selectivity

- Definition of selectivity
- Approaches to evaluating selectivity

Module 7

Capability of detection

- Definitions: critical value, limit of detection, limit of quantitation
- False positives and false negatives
- Typical experiments for establishing LOD
- Statistical basis of limits

Linearity and working range

- Definitions of working range and linearity
- Establishing working range and linearity
- Instrument versus whole method linearity
- Prediction (analytical) linearity
- Measures of linearity
- Tests for non-linearity

Module 8

Measurement uncertainty and validation studies

- Definition of measurement uncertainty
- ISO approach to evaluating uncertainty
- Basic rule for combining uncertainties
- ISO 17025 requirements
- Using data from validation studies in uncertainty estimates

Course wrap up